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Strong Moderate Deviation Theorems for m-Dependent Random Variablest

By

Narasinga Rao Chaganty
Old Dominion University

Abstract

Consider a stationary sequence { X, X2,...} of m-dependent random variables. Let
S, = Y= . X; be the partial sum. Under some moment conditions, in this paper we obtain
asyrptotic expression for the probability of moderate deviations, P(S, > z,), where

zn, = O(y/log(n)). This result extends some well known results obtained for independent

and identically distributed sequences of random variables. Licoession For
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1. Introduction. Let {Xn,n > 1} be a sequence of i.i.d. random variables with mean 0
n

and variance 1. Let S, = Y. X, be the n*® partial sum. The theory of moderate deviations
1=1

introduced by Rubin and Sethuraman (1965a) is concerned with obtaining asymptotic

expression for
(1.1) P(Sn > zn)

where £, = O(y/log(n)), under some moment conditions which are lcss restrictive than
the assumption of finiteness of the moment generating function of X;. In a subsequent
paper Rubin and Sethuraman (1965b) showed that the asymptotic expression for (1.1) is
useful to compare test statistics via Bayes risk efficiency. We shall call a result which gives
the asymptotic expression for (1.1) a weak moderate deviation result. On the other hand
a strong moderate deviation theorem gives an asymptotic expression to the probability
of the event {S, > z} which is valid uniformly in the interval -4 < z < c\/lm.
In this paper we obtain strong moderate deviation theorem for the partial sums of a
stationary sequence {X,, n > 1} of m- dependent random variables. Note that a sequence
{Xn, n > 1} is said to be m-dependent if (X1,...,X,) and (X,, Xs41,...) are independent
whenever s — r > m. The sequence is said to be stationary if (X;41,...,X;+x) has the

same distribution as (X;41,..., X;4) forallk > ¢ 7 v # 5.

2. Main Results. In this section we establish the main theorem of this paper. Theorem
2.1 below obtains a strong moderate deviation theorem for partial sums of m-dependent

sequence of random variables.
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Theorem 2.1. Consider a stationary sequence {X,,n > 1} of m-dependent random vari-

1=1 =1

. m n
ables. Let E(X,) =0ando? = Var(X;)+2 Y Cov(X,,X;;) be finite. Let S, = ) X..

If E[X1|P < oo for some p > ¢% + 2, where ¢ > 0, then

(2.1) P(\fﬁ"o >z) = [1 - &(z)] {HO(@)]

uniformly in the region —A < z < cv/log(n), where A > 0 is a constant and ® denotes the

distribution function of standard normal.

Vandemaele and Veraverbeke (1982) obtained strong moderate deviation theorems
for L-statistics which are functions of independent and identically distributed sequences of
random variables. A special case of their Theorem 1 yields the following Lemma 2.2. We

will need Lemma 2.2 in the proof of Theorem 2.1.

Lemnma 2.2. Let {Xn,,n > 1} be sequence of i.i.d. random variables with mean zero and
n

variance 02. Let S, = 3 X; be the nth partial sum. If E|X;|P < oo for some p > c% + 2,
i=1

(¢ > 0) then (2.1) holds uniformly in the region —A < z < ¢y/log(n), where A > 0 is a

constant.

In the case m = 0, Theorem 2.1 yields Lemma 2.2 and in this sense our main re-
sult generalizes the result of Vandemaele and Veraverbeke (1982) to m-dependent random

variables.

Proof of Theorem 2.1. We shall u<e the blocking technique used by Hoeffding and
Robbins (1948) in proving central limit theorem for m-dependent random variables. Let
0 < a < min{1,1/p} be fixed and k£ = max{2m,[n*|}. We can write n = kv + r, where
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0 < r < k. For n sufficiently large we can partition the n'® partial sum as follows:

Sp=[X1+ .o+ Xiem] + [ Xk—mer + oo+ Xil + [Xer1 + .o+ Xokom)
+ [ Xokema1 + oo+ Xog| + oo+ [Xokomer + -0+ Xk

+ [ka+1 + PR + Xn].
(2.2)
= nl+Rnl+Un2+Rn2+--~+Unu+Rnu+an

=[Un1+...+Uny) + Rat + Rp2+ ...+ Rpu] + Ty,

=Upn+ Rp + Ty (say).

Note that U,, is the sum of v i.i.d. random variables and R,, is also the sum of v i.i.d.
random variables. Let 6, = 1/(log(n))2. It is easy to verify that the following important

identity holds:

Upn R, Ty
> 26. — - —_ —bn
P Vno £t n) P(\/r_w< 5") P( no< 6)

U R T
n — 26, pl - n —nr n ).
\/ﬁa>z 26)+ (\/ﬁa>6>+P(\/r_w>5)

Since [1 — &(z)]"! = O((c\/log(r))n¢"/?) uniformly in —A < z < ¢/log(n),
(A > 0,c¢ > 0), the proof of the theorem will be complete once we establish the following

Lemma 2.3.

Lemma 2.3. Let U,,, R, and T,, be as defined above. Then under the hypothesis of
Theorem 2.1 we have the following:

(A) P (\%‘a >zt zsn) ~ 1= 8(z)] [1 o (logl(n)>]
uniformly in —A < z < ¢\/log(n).




(B) P ( > 5n) = o((log(n))—3/2 n-c’ﬂ).
(C) P (15221 > b2 ) = o log(n) 2 n="/7).
\/7-1-0' \ /
Proof of (A). Note that U] = gki is the sum of v i.i.d. random variables with mean

zero and variance given by

(2.4) M? = 7z [(k m)Var(X,) + Z (k —m ~ ) Cov(X1, X14;)]-

Now,

(o) (R

(2.5)
Uy
=P Mye > zcp
where
. vne [ o° 1/2[n]1/2
T Mk T | kM? kv
(2.6)
o? 12 r /2
= [kw} el
Note that
1 m
kM? = (e —m) Var(Xy) +2 Y (k= m—j) Cov(Xy, X14,)]
1=1
2.7 n
(2.7) =g? - —[mVar X)) + Z m + 7)Cov(X1, X14,)]

= 0? + O(n~%) = ¢?[1 + O(n"°)]

since k = O(n®). Thus we get

ey = O( 1/2 T 1/2?
- 1+ ) (1+ku)

= [1 + O(n—ﬁ)] for some 8 > 0.




Therefore we have shown that

() (s

where ¢, = [1 + O(n™?)]. Hence,

(oo ) (5 o )

(2.10)
=P (A;J\"’ﬁ S In)
where
(2.11) moe [I £ (l—Oé(z—n)ﬂ
~ 14 0] o % s |

Let 6 be such that /p — 2 > ¢+ 6. Then applying Lemma 2.2 with ¢ replaced by ¢+ 6

we get

(2.12) P (;j; > zn) = (1 - ®(zn)] {1 o (E_gl(n—))]

uniformly in the interval —A < z,, < (¢+68)+/log(n). Also using Lemma A1 of Vandermaele

and Veraverbeke (1982) and (2.11) we get

(2.13) 11— ®(z,)] = [1 - 8(z)] [1+o(-——1—)}.

log(n)

Combining (2.10), (2.12) and (2.13) we have

(G > = taat) =~ o ()

uniformly in —A < z < ¢y/log(n). This completes the proof of (A).
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Proof of (B). Note that R, is the sum of v i.i.d. random variables with mean zero and

variance
m—1
(2.14) 0% = mVar(X;) +2Z m — J)Cov(X1, X145)-
im
c? c?
Fix constants « and ¢, such that o < 1 — — c? > =) and p > 2 + ¢2. Applying
p— -«

Theorem 1 of Rubin and Sethuraman (1965a) we get for sufficiently large n,

([l o) =2 (> )
(2.15) <P ( En IOEV(V)>
y=ci/2

c1v/ 27 log(v)

since p > ¢? + 2. Using the fact v = O(n!~*) and (1 — a)c? > ¢? and (2.15), we get that

P ( \%a > 5,,) = o ((log(n)) ~*/2n=<"/2).

This proves (B).

Proof of (C). Applying Chebyshev’s inequality we get

Tor E|T, .|?
P (,——— > 6y ) < —20
Vno ) = (oy/né,)P
(2.16) (ov/n
kP
< t——.
= cons (o4/nén)P
Note that k = O(n®) and hence
7




k? n®  nPe

(Vréa)p ~ el

(2.17) — n—%(p——?pa—cz)(1Og(n))2p+3/2

" (log(n))?/? (log(n))?P+3/?

—0 as n — oo,

since 0 < a < % and p > ¢ +2. The proof of (C) now follows combining (2.16) and (2.17).

Remark 2.4. Theorem 2.1 suggests that it is possible to obtain strong moderate devi-
ation theorems for L-statistics and U-statistics which are functions of m-dependent se-
quences of random variables in the same spirit as Vandemaele and Veraverbeke(1982) and

Ghosh(1974).
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